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Monte Carlo and Jets
Shower Monte Carlos

Sudakov form factor

? Infrared cutoff

Monte Carlo method

Soft gluon emission

? Angular ordering

? Coherent branching
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Shower Monte Carlos
Attempt to give a complete description of a hadron scattering event. Analysis of events

at the Tevatron and the LHC will be performed using these programs.

Large number of standard model hard scattering processes

Inclusion of some BSM processes.

Inclusion of real (and virtual) radiation using QCD-based parton shower

approximation, both in final state and initial state (not shown).

Fragmentation of partons into the observed hadrons.

Model for resonance decay included
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Leading general purpose programs

Pythia, T. Sjöstrand, L. Lönnblad, S. Mrenna and P.Z. Skands,

http://www.thep.lu.se/∼torbjorn/Pythia.html

Pythia 8, T. Sjöstrand C++

http://www.thep.lu.se/∼torbjorn/Pythia.html

HERWIG, G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P.

Richardson, M.H. Seymour, B.R. Webber,

http://hepwww.rl.ac.uk/theory/seymour/herwig/

Herwig++

S. Gieseke, A. Ribon, P. Richardson, M.H. Seymour, P. Stephens, B.R. Webber

http://www.hep.phy.cam.ac.uk/theory/Herwig++/

SHERPA,
Tanju Gleisberg, Frank Krauss, Andreas Schälicke, Steffen Schumann, Jan Winter

ISAJET,
F. Paige, S. Protopopescu, H. Baer and X. Tata

http://www.phy.bnl.gov/∼isajet
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Sudakov form factor
DGLAP equations are convenient for evolution of parton distributions. Expressed

in terms of the unregulated branching probability we have,

t
∂

∂t
D(x, t) =

Z

1

x

dz

z

αS

2π
P̂ (z)D(x/z, t) −

Z

1

0

dz
αS

2π
P̂ (z)D(x, t)

To study structure of final states, slightly different form is useful. Consider again

simplified treatment with only one type of branching. Introduce Sudakov form

factor:

∆(t) ≡ exp

»

−
Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ (z)

–

,

t
∂

∂t
D(x, t) =

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) +

D(x, t)

∆(t)
t

∂

∂t
∆(t) ,

t
∂

∂t

„

D

∆

«

=
1

∆

Z

dz

z

αS

2π
P̂ (z)D(x/z, t) .
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Sudakov form factor
This is similar to DGLAP, except D replaced by D/∆ and regularized splitting

function P replaced by unregularized P̂ . Integrating,

D(x, t) = ∆(t)D(x, t0) +

Z t

t0

dt′

t′
∆(t)

∆(t′)

Z

dz

z

αS

2π
P̂ (z)D(x/z, t′) .

This has simple interpretation. First term is contribution from paths that do not

branch between scales t0 and t. Thus Sudakov form factor ∆(t) is probability of

evolving from t0 to t without branching. Second term is contribution from paths

which have their last branching at scale t′. Factor of ∆(t)/∆(t′) is probability of

evolving from t′ to t without branching.
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Sudakov form factor
Generalization to several species of partons straightforward. Species i has

Sudakov form factor

∆i(t) ≡ exp

2

4−
X

j

Z t

t0

dt′

t′

Z

dz
αS

2π
P̂ji(z)

3

5 ,

which is probability of it evolving from t0 to t without branching. Then

t
∂

∂t

„

Di

∆i

«

=
1

∆i

X

j

Z

dz

z

αS

2π
P̂ij(z)Dj(x/z, t) .
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Infrared cutoff
In DGLAP equation, infrared singularities of splitting functions at z = 1 are

regularized by plus-prescription. However, in above form we must introduce an

explicit infrared cutoff, z < 1 − ε(t). Branchings with z above this range are

unresolvable: emitted parton is too soft to detect. Sudakov form factor with this

cutoff is probability of evolving from t0 to t without any resolvable branching.

Sudakov form factor sums enhanced virtual (parton loop) as well as real (parton

emission) contributions. No-branching probability is the sum of virtual and

unresolvable real contributions: both are divergent but their sum is finite.

Infrared cutoff ε(t) depends on what we classify as resolvable emission. For

timelike branching, natural resolution limit is given by cutoff on parton virtual

mass-squared, t > t0. When parton energies are much larger than virtual masses,

we may write, (n2 = p2 = p · pT = p · pT = 0, n · p = 1)

pa = pµ +
p2

a

2
nµ

pb = zpµ +
p2

T + p2
b

2z
nν + pµ

T

pc = (1 − z)pµ +
p2

T + p2
c

2(1 − z)
nµ − pµ

T
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Solving for the transverse momentum in a → bc is

p2
T = z(1 − z)p2

a − (1 − z)p2
b − zp2

c > 0 .

Hence for p2
a = t and p2

b , p2
c > t0 we require

z(1 − z) > t0/t ,

that is,

z, 1 − z > ε(t) =
1

2
− 1

2

p

1 − 4t0/t ' t0/t .
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Quark Sudakov form factor is then

∆q(t) ' exp

"

−
Z t

2t0

dt′

t′

Z 1−t0/t′

t0/t′
dz

αS

2π
P̂qq(z)

#

.

Taking the argument of the running coupling to be t′ at large t we have

∆q(t) ∼
„

t0

t

«p1
„

αS(t)

αS(t0)

«p2

,

where p1 = a, p2 = a ln(t0/Λ), a = 12CF /(33 − 2nf ) ∼ 16/25.

Careful treatment of running coupling suggests its argument should be

p2
T ∼ z(1 − z)t′.

∆q(t) ∼
„

αS(t)

αS(t0)

«p ln t

,

(p = a constant), which tends to zero faster than any negative power of t.

Infrared cutoff discussed here follows from kinematics. We shall see later that
QCD dynamics effectively reduces phase space for parton branching, leading to a

more restrictive effective cutoff.

Formulation in terms of Sudakov form factor is well suited to computer

implementation, and is basis of “parton shower" Monte Carlo programs.
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Monte Carlo method
Monte Carlo branching algorithm operates as follows: given virtual mass scale and

momentum fraction (t1, x1) after some step of the evolution, or as initial

conditions, it generates values (t2, x2) after the next step.

? Since probability of evolving from t1 to t2 without branching is ∆(t2)/∆(t1),

t2 can be generated with the correct distribution by solving

∆(t2)

∆(t1)
= R

where R is random number (uniform on [0, 1]).

? If t2 is higher than hard process scale Q2, this means branching has finished.

? Otherwise, generate z = x2/x1 with distribution proportional to

(αS/2π)P (z), where P (z) is appropriate splitting function, by solving

Z x2/x1

ε
dz

αS

2π
P (z) = R′

Z 1−ε

ε
dz

αS

2π
P (z)

where R′ is another random number and ε is cutoff for resolvable branching.
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In DIS, (ti, xi) values generated define virtual masses and momentum fractions of

exchanged quark, from which momenta of emitted gluons can be computed.

Azimuthal emission angles are then generated uniformly in the range [0, 2π]. More

generally, e.g. when exchanged parton is a gluon, azimuths must be generated

with polarization angular correlations.

Each emitted (timelike) parton can itself branch. In that case t evolves downwards

towards cutoff value t0, rather than upwards towards hard process scale Q2.

Probability of evolving downwards without branching between t1 and t2 is now

given by

∆(t1)

∆(t2)
= R .

Thus branching stops when R < ∆(t1).
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Parton Cascade

Due to successive branching, parton cascade or shower develops. Each outgoing

line is source of new cascade, until all outgoing lines have stopped branching. At

this stage, which depends on cutoff scale t0, outgoing partons have to be

converted into hadrons via a hadronization model.
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Backwards evolution
The probability of evolving backwards from (t2, x) to (t1, x) without branching is

given by the function

Π(t1, t2; x) =
f(x, t1)∆(t2)

f(x, t2)∆(t1)
=

∆(t2)

f(x, t2)

f(x, t1)

∆(t1)
.

In other words, in place of the Sudakov form factor ∆(ti) we should now use

∆(ti)/f(x, ti). The correct distribution of t1 in the elementary backward step is

obtained by solving the equation

Π(t1, t2; x2) = R

where R is a random number distributed uniformly in the interval [0, 1].

Thus we have to generate z = x2/x1 with a probability distribution proportional to

αS

2π

P (z)

z
f(x2/z, t1)

where P (z) is the appropriate splitting function.
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define dF as the fraction of partons at (t2, x) that came from branching between t

and t + dt. Then the fraction that did not branch between t1 and t2 is

Π(t1, t2; x) = 1 −
Z t2

t1

dF .

Now it follows from the evolution equation

f(x, t) = ∆(t)f(x, t0) +

Z t

t0

dt′

t′
∆(t)

∆(t′)

Z

dz

z

αS

2π
P̂ (z)f(x/z, t′) .

that

f(x, t2)dF =
dt

t

∆(t2)

∆(t)

Z

dz

z

αS

2π
P̂ (z)f(x/z, t)

= dt
∂

∂t

»

∆(t2)

∆(t)
f(x, t)

–

.

Performing the integration we obtain the

Π(t1, t2; x) =
f(x, t1)∆(t2)

f(x, t2)∆(t1)
=

∆(t2)

f(x, t2)

f(x, t1)

∆(t1)
.
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Soft gluon emission

Parton branching formalism discussed so far takes account of collinear

enhancements to all orders in PT. There are also soft enhancements: When
external line with momentum p and mass m (not necessarily small) emits gluon

with momentum q, propagator factor is

1

(p ± q)2 − m2
=

±1

2p · q =
±1

2ωE(1 − v cos θ)

where ω is emitted gluon energy, E and v are energy and velocity of parton

emitting it, and θ is angle of emission. This diverges as ω → 0, for any velocity and

emission angle.

Including numerator, soft gluon emission gives a colour factor times universal,

spin-independent factor in amplitude

Fsoft =
p · ε
p · q

where ε is polarization of emitted gluon.
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For example, emission from quark gives numerator factor N · ε, where

Nµ = (6p + 6q + m)γµu(p)
ω → 0
→ (γνγµpν + γµm)u(p)

= (2pµ − γµ 6p + γµm) u(p) = 2pµ u(p) .

(using Dirac equation for on-mass-shell spinor u(p)).

Universal factor Fsoft coincides with classical eikonal formula for radiation from

current pµ, valid in long-wavelength limit.

No soft enhancement of radiation from off-mass-shell internal lines, since

associated denominator factor (p + q)2 − m2 → p2 − m2 6= 0 as ω → 0.

Introduction to QCD at CollidersLecture III: Shower Monte Carlo – p.18/32



Enhancement factor in amplitude for each external line implies cross section

enhancement is sum over all pairs of external lines {i, j}:

dσn+1 = dσn
dω

ω

dΩ

2π

αS

2π

X

i,j

CijWij

where dΩ is element of solid angle for emitted gluon, Cij is a colour factor, and

radiation function Wij is given by

Wij =
ω2pi · pj

pi · q pj · q =
1 − vivj cos θij

(1 − vi cos θiq)(1 − vj cos θjq)
.

Colour-weighted sum of radiation functions CijWij is antenna pattern of hard
process.

Radiation function can be separated into two parts containing collinear

singularities along lines i and j. Consider for simplicity massless particles,

vi,j = 1. Then Wij = W i
ij + W j

ij where

W i
ij =

1

2

„

Wij +
1

1 − cos θiq
− 1

1 − cos θjq

«

≡ 1

2(1 − cos θiq)

„

1 +
cos θiq − cos θij

1 − cos θjq

«
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This function has remarkable property of angular ordering. Write angular

integration in polar coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq . Performing

azimuthal integration, we find

Z

2π

0

dφiq

2π
W i

ij =
1

1 − cos θiq
if θiq < θij , otherwise 0.

i

j

Thus, after azimuthal averaging, contribution from W i
ij is confined to

cone, centred on direction of i, extending in angle to direction of j. Sim-

ilarly, W j
ij , averaged over φjq , is confined to cone centred on line j ex-

tending to direction of i.
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Angular ordering

To prove angular ordering property, write ni = (0, 0, 1), nj =

(0, sin θij , cos θij), nq = (sin θiq sin φiq,− sin θiq cos φiq, cos θiq), so that

1 − cos θjq = a − b cos φiq

where a = 1 − cos θij cos θiq , b = sin θij sin θiq . Defining z = exp(iφiq), we

have

Ii
ij ≡

Z 2π

0

dφiq

2π

1

1 − cos θjq
=

1

iπb

I

dz

(z+ − z)(z − z−)

where z-integration contour is the unit circle and

z± =
a

b
±

s

a2

b2
− 1 .

Now only pole at z = z− can lie inside unit circle, so

Ii
ij =

Z 2π

0

dφiq

2π

1

a − b cos φiq
=

r

1

a2 − b2
≡ 1

| cos θiq − cos θij |
.

Introduction to QCD at CollidersLecture III: Shower Monte Carlo – p.21/32



Angular ordering (cont)

Z

2π

0

dφiq

2π
W i

ij =
1

2(1 − cos θiq)
[1 + (cos θiq − cos θij)I

i
ij ]

=
1

2(1 − cos θiq)
[1 +

(cos θiq − cos θij)

| cos θiq − cos θij |
]

=
1

1 − cos θiq
if θiq < θij , otherwise 0.
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Chudakov effect
Angular ordering is coherence effect common to all gauge theories. In QED it

causes Chudakov effect – suppression of soft bremsstrahlung from e+e− pairs,

which has simple explanation in old-fashioned (time-ordered) perturbation theory.

Consider emission of soft photon at angle θ from electron in pair with opening

angle θee < θ. For simplicity assume θee, θ � 1.

Transverse momentum of photon is kT ∼ zpθ and energy imbalance at e → eγ
vertex is

∆E ∼ k2
T /zp ∼ zpθ2 .

Time available for emission is ∆t ∼ 1/∆E. In this time transverse separation of

pair will be ∆b ∼ θee∆t.
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Chudakov effect
For non-negligible probability of emission, photon must resolve this transverse

separation of pair, so

∆b > λ/θ ∼ (zpθ)−1

where λ is photon wavelength.

This implies that

θee(zpθ2)−1 > (zpθ)−1 ,

and hence θee > θ. Thus soft photon emission is suppressed at angles larger than

opening angle of pair, which is angular ordering.

Photons at larger angles cannot resolve electron and positron charges separately

– they see only total charge of pair, which is zero, implying no emission.

More generally, if i and j come from branching of parton k, with (colour) charge

Qk = Qi + Qk, then radiation outside angular-ordered cones is emitted

coherently by i and j and can be treated as coming directly from (colour) charge of

k.
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Coherent branching

Angular ordering provides basis for coherent parton branching formalism, which

includes leading soft gluon enhancements to all orders.

In place of virtual mass-squared variable t in earlier treatment, use angular

variable

ζ =
pb · pc

Eb Ec
' 1 − cos θ

as evolution variable for branching a → bc, and impose angular ordering ζ′ < ζ for

successive branchings. Iterative formula for n-parton emission becomes

dσn+1 = dσn
dζ

ζ
dz

αS

2π
P̂ba(z) .
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Coherent branching

In place of virtual mass-squared cutoff t0, must use angular cutoff ζ0 for coherent

branching. This is to some extent arbitrary, depending on how we classify

emission as unresolvable. Simplest choice is

ζ0 = t0/E2

for parton of energy E.

For radiation from particle i with finite mass-squared t0, radiation function

becomes

ω2

„

pi · pj

pi · q pj · q − p2
i

(pi · q)2
«

' 1

ζ

„

1 − t0

E2ζ

«

,

so angular distribution of radiation is cut off at ζ = t0/E2. Thus t0 can still be

interpreted as minimum virtual mass-squared.

With this cutoff, most convenient definition of evolution variable is not ζ itself but

rather

t̃ = E2ζ ≥ t0 .
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Coherent branching

Angular ordering condition ζb, ζc < ζa for timelike branching a → bc (a outgoing)

becomes

t̃b < z2 t̃ , t̃c < (1 − z)2t̃

where t̃ = t̃a and z = Eb/Ea. Thus cutoff on z becomes

q

t0/t̃ < z < 1 −
q

t0/t̃ .

Neglecting masses of b and c, virtual mass-squared of a and transverse

momentum of branching are

t = z(1 − z)t̃ , p2
t = z2(1 − z)2 t̃ .

Thus for coherent branching Sudakov form factor of quark becomes

∆̃q(t̃) = exp

"

−
Z t̃

4t0

dt′

t′

Z 1−
√

t0/t′

√
t0/t′

dz

2π
αS(z2(1 − z)2t′)P̂qq(z)

#

At large t̃ this falls more slowly than form factor without coherence, due to the

suppression of soft gluon emission by angular ordering.
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Coherent branching

Note that for spacelike branching a → bc (a incoming, b spacelike), angular

ordering condition is

θθ

θ

ba

c

a b

c

θb > θa > θc ,

and so for z = Eb/Ea we now have

t̃b > z2 t̃a , t̃c < (1 − z)2 t̃a .

Thus we can have either t̃b > t̃a or t̃b < t̃a, especially at small z — spacelike

branching becomes disordered at small x.
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Color

Colour set up according to the cross section for each colour configuration.

Gluons treated in the large N limit.

Colour information used in the fragmentation.
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String Fragmentation

As quark and antiquark separate, colour field has a string like configuration, with

uniform enegry per unit length.

String breaks up into hadron sized pieces, through qq̄ creation in the intense

colour field
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Cluster Fragmentation

Colour-singlet clusters of partons form after the perturbative phase of jet

development and then decay into the observed hadrons.

non-perturbative splitting of gluons into qq̄ pairs, followed by combination of

neighbouring quarks and antiquarks into color singlet clusters.

if t0 is low, clusters have a mass of a few GeV.

Clusters decay isotropically in their rest frames into pairs of hadrons.
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Recap

Parton evolution can be represented as a branching process from higher values of
x

DGLAP equation predicts growth at small x and shrinkage at large x with

increasing Q2.

The Sudakov form factor ∆(t) is the probability of evolving from t0 to t without

branching.

branching from (t1, x1) to (t2, x2) with the right probability can be performed with

by choosing three random numbers, (t, x, φ)

Branching is subject to an angular ordering constraint. Large angle emission is

dynamically suppressed.

Shower Monte Carlo programs contain, hard scattering cross section, timelike and

spacelike parton showers, models for parton hadronization and resonance decay.

Introduction to QCD at CollidersLecture III: Shower Monte Carlo – p.32/32


	Bibliography
	 Monte Carlo and Jets
	Shower Monte Carlos
	Leading general purpose programs
	Sudakov form factor
	Sudakov form factor
	 Sudakov form factor
	 Infrared cutoff
	
	
	 Monte Carlo method
	
	Parton Cascade
	Backwards evolution
	
	 Soft gluon emission
	
	
	
	 Angular ordering
	Angular ordering (cont)
	Chudakov effect
	Chudakov effect
	Coherent branching
	Coherent branching
	Coherent branching
	Coherent branching
	Color
	String Fragmentation
	Cluster Fragmentation
	Recap

